12 research outputs found

    Obesity-induced chronic inflammation in C57Bl6J mice, a novel risk factor in the progression of renal AA amyloidosis?

    Get PDF
    Background: Compelling evidence links obesity induced systemic inflammation to the development of chronic kidney disease (CKD). This systemic inflammation may result from exacerbated adipose inflammation. Besides the known detrimental effects of typical pro-inflammatory factors secreted by the adipose tissue (TNF-α, MCP-1 and IL-6) on the kidney, we hypothesize the enhanced obesity-induced secretion of serum amyloid A (SAA), an acute inflammatory protein, to play a key role in aggravating obesity-induced CKD. Methods: Groups of male C57Bl/6J mice (n = 99 in total) were fed a low (10% lard) or high (45% lard) fat diet for a maximum of 52 weeks. Mice were sacrificed after 24, 40 and 52 weeks. Whole blood samples, kidneys and adipose tissues were collected. The development of adipose and renal tissue inflammation was assessed on gene expression and protein level. Adipocytokine levels were measured in plasma samples. Results: A distinct inflammatory phenotype was observed in the adipose tissue of HFD mice prior to renal inflammation, which was associated with an early systemic elevation of TNF-α, leptin and SAA (1A-C). With aging, sclerotic lesions appeared in the kidney, the extent of which was severely aggravated by HFD feeding. Lesions exhibited typical amyloid characteristics (2A) and pathological severity positively correlated with bodyweight (2B). Interestingly, more SAA protein was detected in lesions of HFD mice. Conclusion: Our data suggest a causal link between obesity induced chronic inflammation and AA amyloidosis in C57Bl/6J mice. Though future studies are necessary to prove this causal link and to determine its relevance for the human situation, obesity may hence be considered a risk factor for the development and progression of renal AA amyloidosis in the course of CKD. (Figure Presented)

    Предсказание торсионных углов в аминокислотных последовательностях белков на основе байесовской процедуры распознавания на цепях Маркова

    Get PDF
    Запропоновано процедуру розпізнавання торсіонних кутів, утворених C^α атомами чотирьох сусідніх амінокислотних залишків. Отримана послідовність кутів використовується для побудови просторової структури білка на решітці Z³.Torsion angles defined on C^α atoms of four neighbouring residues are predicted using Bayesian pattern recognition procedure on non-stationary Markov chains. The predicted sequence of torsion angles is used for constructing protein 3-dimensional structure on Z³

    Nonalcoholic fatty liver disease: A main driver of insulin resistance or a dangerous liaison?

    Get PDF
    AbstractInsulin resistance is one of the key components of the metabolic syndrome and it eventually leads to the development of type 2 diabetes, making it one of the biggest medical problems of modern society. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are tightly associated with insulin resistance. While it is fairly clear that insulin resistance causes hepatic steatosis, it is not known if NAFLD causes insulin resistance. Hepatic inflammation and lipid accumulation are believed to be the main drivers of hepatic insulin resistance in NAFLD. Here we give an overview of the evidence linking hepatic lipid accumulation to the development of insulin resistance, including the accumulation of triacylglycerol and lipid metabolites, such as diacylglycerol and ceramides. In particular, we discuss the role of obesity in this relation by reviewing the current evidence in terms of the reported changes in body weight and/or adipose tissue mass. We further discuss whether the activation or inhibition of inflammatory pathways, Kupffer cells and other immune cells influences the development of insulin resistance. We show that, in contrast to what is commonly believed, neither hepatic steatosis nor hepatic inflammation is sufficient to cause insulin resistance. Many studies show that obesity cannot be ignored as an underlying factor in this relationship and NAFLD is therefore less likely to be one of the main drivers of insulin resistance

    Cholesterol-induced hepatic inflammation does not underlie the predisposition to insulin resistance in dyslipidemic female LDL receptor knockout mice.

    Get PDF
    Contains fulltext : 154761.pdf (publisher's version ) (Open Access)Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr (-/-)) mice. For this, wild type (WT) and Ldlr (-/-) mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr (-/-) mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr (-/-) mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr (-/-) mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr (-/-) mice suffered from hepatic insulin resistance. While HFC-fed Ldlr (-/-) mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr (-/-) mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se

    Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice.

    Get PDF
    Item does not contain fulltextOBJECTIVE: It is generally assumed that hepatic inflammation in obesity is linked to the pathogenesis of insulin resistance. Several recent studies have shed doubt on this view, which questions the causality of this association. This study focuses on Kupffer cell-mediated hepatic inflammation as a possible driver of insulin resistance in the absence and presence of obesity. METHODS: We used male mice deficient for the low-density lipoprotein receptor (Ldlr(-/-)) and susceptible to cholesterol-induced hepatic inflammation. Whole body and hepatic insulin resistance was measured in mice fed 4 diets for 2 and 15 weeks, i.e., chow, high-fat (HF), HF-cholesterol (HFC; 0.2% cholesterol) and HF without cholesterol (HFnC). Biochemical parameters in plasma and liver were measured and inflammation was determined using immunohistochemistry and RT-PCR. RESULTS: At 2 weeks, we did not find significant metabolic effects in either diet group, except for the mice fed a HFC diet which showed pronounced hepatic inflammation (p HF, HFnC; p < 0.05) insulin resistance in mice fed HFC was no worse compared to mice on a HFnC and HF diet. CONCLUSION: These data show that cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male Ldlr(-/-) mice. This study suggests that Kupffer cell-driven hepatic inflammation is a consequence, not a cause, of metabolic dysfunction in obesity.1 februari 201

    High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice.

    No full text
    Item does not contain fulltextMetabolic inflammation in adipose tissue and the liver is frequently observed as a result of diet-induced obesity in human and rodent studies. Although the adipose tissue and the liver are both prone to become chronically inflamed with prolonged obesity, their individual contribution to the development of metabolic inflammation remains speculative. Thus, we aimed to elucidate the sequence of inflammatory events in adipose and hepatic tissues to determine their contribution to the development of metabolic inflammation and insulin resistance (IR) in diet-induced obesity. To confirm our hypothesis that adipose tissue (AT) inflammation is initiated prior to hepatic inflammation, C57BL/6J male mice were fed a low-fat diet (LFD; 10% kcal fat) or high-fat diet (HFD; 45% kcal fat) for either 24, 40 or 52 weeks. Lipid accumulation and inflammation was measured in AT and liver. Glucose tolerance was assessed and plasma levels of glucose, insulin, leptin and adiponectin were measured at various time points throughout the study. With HFD, C57BL/6j mice developed a progressive obese phenotype, accompanied by IR at 24 and 40 weeks of HFD, but IR was attenuated after 52 weeks of HFD. AT inflammation was present after 24 weeks of HFD, as indicated by the increased presence of crown-like structures and up-regulation of pro-inflammatory genes Tnf, Il1beta, Mcp1 and F4/80. As hepatic inflammation was not detected until 40 weeks of HFD, we show that AT inflammation is established prior to the development of hepatic inflammation. Thus, AT inflammation is likely to have a greater contribution to the development of IR compared to hepatic inflammation.1 april 201

    High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-kappaB/STAT1-IRF1 Signaling

    No full text
    Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-kappaB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses
    corecore